POTENTIAL FOR DEVELOPING PHYTOPHARMACY BASED ON MARINE RESOURCES: REVIEW

  • Ratna Dewi Zebua Department of Aquatic Resources, Faculty of Science and Technology, Universitas Nias
  • Eliyunus Waruwu Department of Aquatic Resources, Faculty of Science and Technology, Universitas Nias
  • Betzy Victor Telaumbanua Department of Aquatic Resources, Faculty of Science and Technology, Universitas Nias
  • Destriman Laoli Department of Aquatic Resources, Faculty of Science and Technology, Universitas Nias
Keywords: Marine Biota, Pharmacology, Bioactive Compounds, Biological Resources

Abstract

Indonesia is the world's largest archipelagic country, providing abundant biodiversity potential. The rapid development of chemistry, phytochemistry, and pharmacology has increased the research and application of various plants in the health sector. Phytopharmaca is a standardized herbal medicine that has proven its efficacy through clinical trials. Various types of marine biota that are easy to find have been proven to contain bioactive compounds that can potentially develop phytopharmaceuticals based on biological resources. The development of phytopharmaceuticals made from marine plant raw materials has yet to be widely developed. Limiting factors often found are references to pharmaceutical standardization and the required research funding. However, this does not rule out the possibility of realizing phytopharmaceutical products from marine plants that meet standards and clinical trials. Therefore, the aim of the explanation regarding research, types, and potential of marine biological resources in phytopharmaceuticals is to provide information and learning media

Downloads

Download data is not yet available.

References

Irmawati, F., Primiani, C.N. Perbandingan Uji Toksisitas Fitoestrogen pada Ginjal Tikus (Sprangue dawley) yang Diinduksi Daidzein dan Air Perasan Umbi Bengkuang (Pachyrhizus erosus). Bioeksperimen: Jurnal Penelitian Biologi, 2017; 3(2): 52-60.

Kusumastono, T. Pengembangan Sumberdaya Kelautan dalam Memperkokoh Perekonomian Nasional Abad 21. available from http://www.lfip.org/english/pdf/baliseminar/pemberdayaan accessed at 5 June 2023. 2018

Daren, K.H., Dhaliwalm, R., Day, R.D.A., Drover, J., Cote, H., Wischmeyer, P. Optimizing the Dose of Glutamine Dipeptides and Antioxidants in Critically iii patients: a Phase I Dose-finding study. J. of Par. and Ent.Nutri., 2007 31(2): 109-118.

Sunarno. (2015). Potential of Glutathione Antioxidant in the Hipocampus Repair: Preliminary Study on Bioactive Materials Antiaging of Snakehead Fish (Chana striata) in Animal Models of Aging. International J. Sci. Eng., 2015; 8(1): 22-25

Purnama, A.A., Brahmana, E.M. Bioaktivitas Antibakteri Lamun Thalassia hemprichii dan Enhalus acoroides, Jurnal Biologi Universitas Andalas, 2018; 6(1): 45-50.

Karim, F.Y., Kawung, N. J., Wagey, B.T. Uji Toksisitas dari ekstrak Lamun Jenis Thalassia hemprichii dari Perairan Kalasey dengan Menggunakan Metode Brine Shrimp Lethality Test. Jurnal Pesisir dan Laut Tropis, 2019; 7(3): 265-270

Rahmah M., Barizah N. Penataan dan Regulasi Pemerintah Atas Paten Obat yang Berasal dari Tanman Lokal Rumput Laut. CV MARKUMI. 2019.

Amaranggana, L., Wathoni, N. Manfaat Alga Merah (Rhodophyta) sebagai Sumber Obat dari Bahan Alam. Farmasetika, 2017; 2(1):16.

Sari BL., Susanti N., Susanto. Skrining Fitokimia dan Aktivitas Antioksidan Fraksi Etanol Alga Merah Eucheuma spinosum. Pharm Sci Res., 2015; 2(2):59-66

Anggadiredja, J.T., Zatnika, A., Purwoto, H., Istini, S. Rumput Laut. Jakarta: Penebar Swadaya. 2009.

Tanduwinata, A., Istiqomah, H.A., Jamilah, J., Caesaria, N.L., Saputra, R., Aulanni’am. Bioactive Potency of Red Algae (Gracillaria verrucosa) Extract towards Malondialdehyde Level and Lung Histology of White Rat (Rattus novergicus) after Formalin Induction. Jurnal Ilmu Kimia Universitas Brawijaya, 2015; 10(2): 86–87.

Kasanah, N., Triyanto, T., Seto, D.S., Amelia, W., Isnansetyo, A. Anti-bacterial Compounds from Red Seeweed (Rhodophyta). Indonesia Jurnal Chemistry, 2015; 15(2): 201-209

El-Sheekh, M.M., Hamad, S.M., Gomaa, M. Protective Effects of Spirulina on the Liver Function and Hyperlipidemia of Rats and Human. Braz. Arch. Biol. Technol., 2014; 57: 77–86.

Serban, M.C., Sahebkar, A., Dragan, S., Stoichescu-Hogea, G., Ursoniu, S., Andrica, F.-M., Banach, M. A Systematic Review and Meta-analysis of the Impact of Spirulina Supplementation on Plasma Lipid Concentrations. Clin. Nutr., 2016; 35: 842–851.

Mysliwa-Kurdziel, B. Phycobilins and Phycobiliproteins used in Food Industry and Medicine. Mini-Rev. Med. Chem., 2017; 17, 1173–1193.

Choi, W.Y., Lee, H.Y. Effect of ultrasonic extraction on production and structural changes of C-Phycocyanin from Marine Spirulina maxima. Int. J. Mol. Sci., 2018; 19: 220.

Komariah, M., Herliana, L., Nugroho, H.S.W. SEVOO (Extrac Spirulina & Extra Virgin Olive Oil) Terapi Baru untuk Menurunkan Tingkat Mordibitas dan Mortilitas akibat Kanker. Jurnal penelitian Kesehatan Suara Forikes, 2022; 13(1) : 255-264

Braune, S., Genre, A.K., Kammerer, S., Jung, F., Kupper, J.H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life, 2021; 11(91):1-14.

Liu, Q., Huang, Y., Zhang, R., Cai, T., Cai, Y. Medical Application ofSpirulina platensisDerived C-Phycocyanin. Evid. Based Complement. Altern. Med. 2016, 7803846

Colla, L.M., Baisch, A.L., Costa, A.V. Spirulina platensis Effect on the Levels of Total Cholesterol, HDL, and Triacylglycerols in Rabbits Fed with a Hypercholesterolemic Diet. Brazilian Archives of Biology and Technology, 2008; 51(2): 405-411.

Li, B., Chu, X., Gao, M., Li, W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim. Biophys. Sin., 2009; 42: 80–89.

Chen, T., Wong, Y.S. In vitro Antioxidant and Antiproliferative Activities of Selenium-Containing Phycocyanin from Selenium Enriched Spirulina platensis. J. Agric. Food Chem., 2008; 56: 4352–4358

Arunasree, K.M., Roy, K.R., Reddy, N.P., Dheeraj, B., Reddy, G.V., Reddanna, P. Alteration of Mitochondrial Membrane Potential by Spirulina platensis C-phycocyanin Induces Apoptosis in the doxorubicin-Resistant Human Hepatocellular-Carcinoma Cell Line HepG2. Biotechnol. Appl. Biochem., 2007; 47: 159–167

Bingula, R., Dupuis, C., Pichon, C., Berthon, J.Y., Filaire, M., Pigeon, L., Filaire, E. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo. J. Oncol., 2016; 8162952

Li, B., Gao, M., Chu, X.M., Teng, L., Lv, C.Y., Yang, P., Yin, Q.F. The Synergistic Antitumor Effects of All-trans Retinoic Acid and C-phycocyanin on the Lung Cancer A549 cells In Vitro and In Vivo. Eur. J. Pharmacol., 2015; 749: 107–114.

Wang, H., Liu, Y., Gao, X., Carter, C.L., Liu, Z.R. The Recombinant β Subunit of C-Phycocyanin Inhibits Cell Proliferation and Induces Apoptosis. Cancer Lett., 2007; 247: 150–158.

Subhashini, J., Mahipal, S.V., Reddy, M.C., Reddy, M.M.; Rachamallu, A., Reddanna, P. (2004). Molecular Mechanisms in C-Phycocyanin Induced Apoptosis in Human Chronic Myeloid Leukemia Cell Line-K562. Biochem. Pharmacol., 2004; 68: 453–462.

Gardeva, E., Toshkova, R., Yossifova, L., Minkova, K., Ivanova, N., Gigova, L. Antitumor activity of C-phycocyanin from Arthronema africanum (Cyanophyceae). Braz. Arch. Biol. Technol., 2014; 57: 675–684.

Jiang, L., Wang, Y., Zhu, F., Liu, G., Liu, H., Ji, H., Zheng, S., Li, B. Molecular Mechanism of Anti-Cancer Activity of the Nano-Drug C-PC/CMC-CD59sp NPs in Cervical Cancer. J. Cancer., 2019; 10: 92–104.

Karami, L., Majd, A., Mehrabian, S., Nabiuni, M., Salehi, M., Irian, S. Antimutagenic and Anti-Cancer Effects of Avicennia marina Leaf Extract on Salmonella typhimurium TA100 Bacterium and Human Promyelocytic Leukaemia HL-60 Cells. Sci. Asia, 2012; 38 (4): 349–355.

Das, S.K., Patra, J.K., Thatoi, H. Antioxidative Response to Abiotic dan Biotic Stresses in Mangrove Plants: A Review. Int. Rev. Hydrobiol., 2016; 101 (1-2): 3-19.

Thatoi, H., Samantaray, D., Das, S.K. The Genus Avicennia, a Pioneer Group of Dominant Mangrove Plant Species with Potential Medicinal Values: A Review. Front life Sci., 2016; 9(4) : 267-291

Nabeelah, B.S., Fawzi, M.M., Gokhan, Z., Rajesh, J., Nadeem, N., Pandian, S.K. (2019). Ethnopharmacology, Phytochemistry, and Global Distribution of Mangroves-A Comprehensive Review. Mar. Drufs, 2019; 17(4), 231.

Shafie, M., Forghani, A., Moshtaghiyan, J. Anti-Inflammatory Effects of Hydroalcoholic Extracts of Mangrove (Avicennia marina) and Vitamin C on Arthritic Rats. Bull. Environ. Pharmacol. Life Sci., 2013; 2, 32–37.

Liebezeit, G., Rau, M.T. New Guinean Mangroves Traditional Usage and Chemistry of Natural Products. Senckenberg. Maritima, 2006; 36(1): 1–10.

Zhu, F., Chen, X., Yuan, Y., Huang, M., Sun, H., Xiang, W. The Chemical Investigations of the Mangrove Plant Avicennia marina and its Endophytes. Open Nat. Prod. J., 2009; 2 (1).

Khasim, S.M., Long, C., Thammasiri, K., Lutken, H., Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation. Springer. 2020.

Okla, M.K., Alamri, S.A., Alatar, A.A., Hegazy, A.K., Al-Ghamdi, A.A., Ajarem, J.S., Faisal, M., Abdel-Salam, E.M., Ali, H.M., Salem, M.Z. Antioxidant, Hypoglycemic, and Neurobehavioral Effects of a Leaf Extract of Avicennia marina on Autoimmune Diabetic Mice. Evid. based Compl. Altern. Med., 2019.

Osman, N.A., Abkar, F.A. Comparative Evaluation of some Selected Bioactive Constituents in the Leaves and Bark of Avicennia marina (Forsk.) Veirh from the Sudanese Red Sea Coast. J. For. Prod. Ind., 2016; 4(1): 5–11

Lincy, M.P., Paulpriya, K., Mohan, V.R. In Vitro Antioxidant Activity of Avicennia marina (Forssk) Vierh Pneumatophore (Avicenniaceae). Sci. Res. Rep., 2013; 3(2): 106–114.

Sudha, M., Gnanamani, A. In Vitro Studies on Evaluation of Profaned Antioxidant Properties of Unspent Tannins. Curr. Sci., 2008; 87–89.

Prabhu, V.V., Guruvayoorappan, C. Phytochemical Screening of Methanolic Extract of Mangrove Avicennia marina (Forssk.) Vierh. Der Pharm. Sin., 2012; 3(1): 64–70

Babu, B., Bioactivity of Avicennia marina and Rhizophora mucronata for the Management of Diabetes Mellitus. World J. Pharmaceut. Res., 2014; 3(1): 311–318.

Devi, A.S., Rajkumar, J., Modilal, M., Ilayaraja, R., Antimicrobial Activities of Avicennia marina, Caesalpinia pulcherrima and Melastoma malabathricum against Clinical Pathogens Isolated from UTI. Int. J. Pharm. Biol. Sci., 2012; 3(3): 698–705

Beula, J.M., Gnanadesigan, M., Rajkumar, P.B., Ravikumar, S., Anand, M. Anti-viral, Antioxidant, and Toxicological Evaluation of Mangrove Plant from South East Coast of India. Pac. J. Trop Biomed., 2012; 2(1): 352–357

Moghal, M.M.R., Bhattacharjee, A., Seeam, S.M., Islam, A.M., Bappy, M.H. Phytochemical Screening, Cytotoxic and Anthelmintic Activities of Amorphophallus campanulatus (Roxb.), Avicennia marina (Forssk.) and Launaea sarmentosa (Willd.). Bangladesh Pharmaceut. J., 2016; 19(1): 106–113.

Sangeetha, K.S., Umamaheswari, S., Reddy, C.U.M., Kalkura, S.N. Flavonoids: Therapeutic Potential of Natural Pharmacological Agents. Int. J. Pharmaceut. Sci. Rev. Res., 2017; 7(10), 3924

Yang, S., Loro, E., Wada, S., Kim, B., Tseng, W., Li, K. Functional Effects of Muscle PGC-1alpha in Aged Animals. Skeletal Muscle, 2020; 10(1):14.

Permatasari, H.K., Nurkolis, F., Augusta, P.S., Mayulu, N., Kuswari, M., Taslim, N.A., et al. Kombucha Tea from Seagrapes (Caulerpa racemosa) Potential as a Functional Anti-Ageing Food: In Vitro and In Vivo Study. Heliyon, 2021; 7(9):e07944.

Gaillande, C.de., Payri, C., Remoissenet, G., Zubia, M. Caulerpa Consumption, Nutritional Value and Farming in the Indo-Pacific Region, J. Appl. Phycol., 2016; 29 (5) 2249–2266.

Luhulima, A., Niwele, A., Kadimas, S.S. Uji Aktivitas Antibakteri Ekstrak Etanol 70% Anggur Laut (Caulerpa racemosa) terhadap Bakteri Staphylococcus aureus dengan Menggunakan Metode Difusi. Jurnal Rumpun Ilmu Kesehatan, 2022; 2(1) : 170- 179

Kumar, A., Krishnamoorthy, E., Devi, H.M., Uchoi, D., Tejpal, C.S., Ninan, G., Zynudheen, A.A. Influence of Sea Grapes (Caulerpa racemosa) Supplementation on Physical, Functional, and Antioxidant Properties of Semi-Sweet Biscuits. J. Appl Phycol., 2017; 30: 1393–1403.

Magdugo, R.P., Terme, N., Lang, M., et al. (2020). An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—Two Chlorophyte Collected from the Philippines. Mol, 2020; 25 (12)

Ngadiarti, I., Nurkolis, F., Handoko, M.N., Perdana, F., Permatasari, H.K., Taslim, N.A., et al. Anti-Aging Potential of Cookies from Sea Grapes in Mice Fed on Cholesterol and Fat Enriched Diet: In vitro with in vivo study. Heliyon, 2022; 8(5):e09348.

Aroyehun, A.Q.B., Razak, S.A., Palaniveloo, K., et al. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (forsskal) J. Agardh: a perspective on nutritional properties, antioxidative capacity, and antidiabetic potential, Foods, 2020; 9 (9)

Turpin, C., Catan, A., Guerin-Dubourg, A., et al. Enhanced Oxidative Stress and Damage in Glycated Erythrocytes. PLoS One, 2020; 15 (7).

Cao, M., Li, Y., Famurewa, A.C., Olatunji, O.J. Antidiabetic and Nephroprotective Effects of Polysaccharide Extract from the Seaweed Caulerpa racemosa in High Fructose-Streptozotocin Induced Diabetic Nephropathy, Diabetes, Metab. Syndrome Obes. Targets Ther. 2021; 14

Kuswari, M., Nurkolis, F., Mayulu, N., Ibrahim, F.M., Taslim, N.A., Wewengkang, D.S., et al. Sea Grapes Extract Improves Blood Glucose, Total Cholesterol, and PGC-1α in Rats Fed on Cholesterol and Fat-Enriched Diet. F1000Res., 2021; 10:718.

Departemen Kesehatan Republik Indonesia. Obat Kelompok Fitoterapi. Rencana Kerangka Tahap-Tahap Pengembangan Obat Tradisional. Jakarta. 1985

Published
2023-12-07
How to Cite
Zebua, R. D., Waruwu, E., Telaumbanua, B. V., & Laoli, D. (2023). POTENTIAL FOR DEVELOPING PHYTOPHARMACY BASED ON MARINE RESOURCES: REVIEW. Asian Journal of Aquatic Sciences, 6(3), 352-360. https://doi.org/10.31258/ajoas.6.3.352-360
Section
Articles